Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type
§ 2.2 Mathematical Expectation
§ 2.3 Special Mathematical Expectation
§ 2.4 The Binomial Distribution
§ 2.5 The Hypergeometric Distribution
§ 2.6 The Negative Binomial Distribution
§ 2.7 The Poisson Distribution

Definition 2.7-1 Let the number of occurrences of some event in a given continuous interval be counted. Then we have an approximate Poisson process with parameter $\lambda>0$ if the following conditions are satisfied:
(a) The numbers of occurrences in non overlapping subintervals are independent.
(b) The probability of exactly one occurrence in a sufficiently short subinterval of length h is approximately λh.
(c) The probability of two or more occurrences in a sufficiently short subinterval is essentially zero.

Definition 2.7-2 A r.v. X is called a Poisson r.v. with parameter $\lambda(>0)$ if its pmf is given by

$$
f(x)=\mathbb{P}(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x=0,1,2,3, \cdots
$$

The corresponding cdf of X is

$$
F(x)=e^{-\lambda} \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \quad n \leq x<n+1
$$

The moment-generating function of Poisson r.v. X is

$$
M(t)=\mathbb{E}\left(e^{t x}\right)=\sum_{x=0}^{\infty} e^{t x} \frac{\lambda^{x} e^{-\lambda}}{x!}=e^{-\lambda} \sum_{x=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{x}}{x!}=e^{-\lambda} e^{\lambda e^{t}}=e^{\lambda\left(e^{t}-1\right)}
$$

from which one obtain the mean and variance of the Poisson r.v. X

$$
\mu=\mathbb{E}(X)=\lambda \quad \text { and } \quad \sigma^{2}=\operatorname{Var}(X)=\lambda
$$

Remark 2.7-1 In the case of large n and small p, we have that

$$
\binom{n}{k} p^{k}(1-p)^{n-k} \approx e^{-\lambda} \frac{\lambda^{k}}{k!} \quad n p=\lambda
$$

which indicates that the binomial distribution can be approximated by the Poisson distribution.

The Poisson r.v. has a tremendous range of applications in diverse areas because it may be used as an approximation for binomial r.v. with parameters (n, p) when n is large and p is small enough so that $n p$ is of a moderate size.

Some examples of Poisson r.v.'s include

1. The number of telephone calls arriving at a switching center during various intervals of time
2. The number of misprints on a page of a book
3. The number of customers entering a bank during various intervals of time.

Example 2.7-1 A noisy transmission channel has a per-digit error probability $p=0.01$.
(a) Calculate the probability of more than one error in 10 received digits.
(b) Repeat (a), using the Poisson approximation.

Example 2.7-2 The number of telephone calls arriving at a switchboard during any $10-$ minute period is known to be a Poisson r.v. X with $\lambda=2$.
(a) Find the probability that more than three calls will arrive during any 10-minute period.
(b) Find the probability that no calls will arrive during any 10-minute period.

Exercises from textbook: 2.7-1, 2.7-2,2.7-3, 2.7-5,2.7-9, 2.7-11.

